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IMPROVING DAILY WATER YIELD ESTIMATES IN THE

LITTLE RIVER WATERSHED: SWAT ADJUSTMENTS

E. D. White,  G. W. Feyereisen,  T. L. Veith,  D. D. Bosch

ABSTRACT. Researchers are assessing the beneficial effects of conservation practices on water quality with hydrologic models.
The assessments depend heavily on accurate simulation of water yield. This study was conducted to improve Soil and Water
Assessment Tool (SWAT) hydrologic model daily water yield estimates in the Little River Experimental Watershed (LREW)
in south Georgia. The SWAT code was altered to recognize a difference in curve number between growing and dormant
seasons, to use an initial abstraction (Ia), of 0.05S rather than 0.2S, and to adjust curve number based on the level of soil
saturation in low‐lying riparian zones. Refinements were made to two SWAT input parameters, SURLAG and ALPHA_BF,
from a previous set of calibration parameters. The combined changes improved the daily Nash‐Sutcliffe model efficiency
(NSE) from 0.42 to 0.66 for water yield at the outlet of the 16.9 km2 subwatershed K of the LREW for the ten‐year period 1995
to 2004. Further calibration of the SURLAG coefficient yielded the largest improvement of five alterations, and changing Ia
effected the next largest improvement. Over the ten‐year investigation period, the model predicted annual average water yield
within 1% of measured streamflow, and deviation between observed and simulated values for stormflow was <2.2%. Annual
daily NSEs for each of the ten years were improved; for two years affected by seasonal tropical storm events, NSEs were
changed from negative to positive values. The results of this study support the adjustment of the Ia ratio in the runoff curve
number and suggest that additional changes to SWAT would improve water yield prediction for southern Coastal Plain
locations.

Keywords. Calibration, CEAP, Coastal Plain, Curve number, Hydrologic modeling, Initial abstraction, SWAT.

he Farm Security and Rural Investment Act of
2002, known as the 2002 Farm Bill, increased fund‐
ing for conservation programs nearly 80% over the
previous (1996) farm bill. The additional invest‐

ment in conservation measures heightened the need to quan‐
tify water quality, soil quality, and water conservation
benefits of conservation practices. To address this issue, the
USDA Natural Resources Conservation Service (NRCS) ini‐
tiated a project, the Conservation Effects Assessment Project
(CEAP), with two components: a national assessment of con‐
servation benefits based on modeled estimates; and an ap‐
praisal of the benefits of specific practices at the watershed
scale based on modeled estimates and analysis of field data
(Mausbach and Dedrick, 2004). Twelve research watersheds
managed by the USDA Agricultural Research Service (ARS)
were chosen as benchmark locations for performing the wa‐
tershed assessment. The designed approach was to evaluate
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environmental  benefits of conservation practices by employ‐
ing two different watershed‐scale models that had been cali‐
brated and validated with historic data from the research
sites. One of the two complex simulation models chosen was
the Soil and Water Assessment Tool (SWAT) (Arnold and
Fohrer, 2005; Gassman et al., 2007).

Researchers in the U.S., Europe, Asia, Africa, and Austra‐
lia have published over 250 peer‐reviewed articles using
SWAT for watershed hydrology and water quality studies at
scales ranging from small experimental stations (<10 km2) to
river basins (>100,000 km2) (Gassman et al., 2007). The
manner in which SWAT handles hydrology is critical to the
model's water quality outcomes, and thus assessment of con‐
servation practices. SWAT calculates the partitioning of pre‐
cipitation into runoff, surface interception, and infiltration by
using the NRCS curve number (CN) method (USDA‐NRCS,
2004a). The CN is a dimensionless number between 0 and
100 that relates runoff to precipitation based on vegetative
cover, surface treatment, and soil properties. Despite this
method's frequent use, it stirs controversy because of its em‐
pirical nature and the fact that its use has extended beyond its
intended purpose of estimating cumulative runoff depth and
peak flow rate. Gassman et al. (2007) provide a concise re‐
view of the strengths and uncertainties of using the CN meth‐
od in SWAT. One particular part of the CN that is difficult to
generalize is the amount of rainfall that does not immediately
run off during a precipitation event. This quantity, known as
the initial abstraction (Ia), is expressed as a portion of the
available storage capacity (S) in the watershed. Historically,
Ia has been established as 0.2 times S; however, researchers
have suggested that results can be improved by using a small‐
er fraction of S (Woodward et al., 2003; Bryant et al., 2006).

T
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Another CN issue currently being addressed by the SWAT
modeling community is the manner in which the model does
or does not reflect variable source area hydrology. Easton et
al. (2007) redefined the CN to estimate variable source area
contribution to runoff and incorporated their concepts into a
modified version of SWAT, known as SWAT‐VSA.

Meeting the CEAP goals involved development of wa‐
tershed assessment models tailored to specific regions in the
nation. The Little River Experimental Watershed (LREW),
located in south Georgia and representative of the southeast‐
ern Coastal Plain physiographic province, was chosen as one
of the CEAP benchmark watersheds. Prior hydrologic mod‐
eling studies focusing on the entire LREW or one of its nested
subwatersheds have shown that SWAT tends to overpredict
streamflow during drier, low‐flow periods, especially in re‐
sponse to late summer or autumn tropical storms (Bosch et
al., 2004; Van Liew et al., 2005; Feyereisen et al., 2007; Van
Liew et al., 2007). Researchers using SWAT for studies in
other geographic regions have observed the same seasonal
trend: underprediction of streamflow or runoff during wet pe‐
riods and overprediction during drier periods (King et al.,
1999; Arnold et al., 2000; Anand et al., 2007; Green et al.,
2007). Because biogeochemical processes affecting surface
and subsurface water quality are complex, an accurate assess‐
ment of chemistry and pollutant load needs to be supported
by an accurate accounting of water in the atmosphere‐soil‐
water system (Skaggs, 1999). More precise model estimation
of water movement reduces the uncertainty of estimating the
effects of conservation practices on water quality.

Previous studies in the LREW provided clues that in‐
formed our research approach. Although Feyereisen et al.
(2007) calibrated SWAT for subwatershed K, they found in
a subsequent sensitivity analysis of 16 model input parame‐
ters that at least one parameter had not been optimized.
Feyereisen et al. (2008), following the procedure of Yoo et al.
(1993), calculated CNs from plot runoff data for a typical
cotton‐peanut rotation on a soil‐landscape typical of the
LREW and reported higher CNs during the dormant season
than the growing season. Plot runoff was estimated using the
NRCS CN method (USDA‐NRCS, 2004b) and either one
annual CN or two separate CNs for the growing and dormant
seasons for each of two tillage types: conventional and con‐
servation strip. The CNs were not adjusted for antecedent
moisture conditions when calculating runoff from each storm
in the test period record. Although the CNs for the two sea‐
sons were significantly different from one another, the re‐
searchers found that there were only slight improvements in
runoff estimates when using separate growing and dormant
season CNs. In this study using SWAT, we hypothesized that
incorporating seasonal CNs into SWAT would improve run‐
off estimates over those in the previous LREW SWAT study
(Feyereisen et al., 2007). We anticipated improvement be‐
cause SWAT adjusts CN daily based upon soil moisture.

Sheridan and Shirmohammadi (1986) improved CN
method storm event runoff volume estimates for LREW sub‐
watersheds K and O by using CN values corresponding to
typical seasonal antecedent moisture conditions (AMC) in
low‐lying, runoff‐producing, near‐stream alluvial soils. By
assigning CNs to the alluvial soils corresponding to histori‐
cally relatively dry conditions during late summer and fall
(AMC‐I), normal conditions during late spring and early
summer (AMC‐II), and relatively wet conditions during the
winter and early spring (AMC‐III), they improved the aver‐

age runoff estimate for 37 storms for LREW subwatershed K
from 11.4 to 19.3 mm (measured = 20.1 mm) and improved
the correlation coefficient (r) of predicted to measured values
from 0.81 to 0.91.

The objective of this study was to improve SWAT's repre‐
sentation of processes governing total water yield (TWLD)
for the LREW subwatershed K by: (1) differentiating CN for
growing and dormant seasons; (2) assigning CNs to runoff‐
generating lowlands based on season and soil moisture condi‐
tion; (3) re‐calibrating SURLAG and ALPHA_BF, input
parameters identified in a previous study as needing further
calibration; and (4) adjusting Ia in the CN method to reflect
the findings of other researchers.

METHODS
In this analysis, we investigated methods of improving

SWAT's daily streamflow prediction for the 16.9 km2 subwa‐
tershed K (LRK) of the LREW. Our research approach was
to improve daily water yield estimates by adjusting curve
number (CN) seasonally; using a different initial abstraction
(Ia), that is, the rainfall amount in the NRCS CN method
above which runoff begins; changing CN in the low‐lying
riparian soils based upon soil moisture; refining SWAT input
parameter calibration values; and making other simple modi‐
fications to SWAT input parameters or coding.

WATERSHED DESCRIPTION

The LREW is a 334 km2 watershed located in south‐
central Georgia in Turner, Worth, and Tift counties (fig. 1).
The USDA‐ARS has monitored weather and streamflow data
on this watershed since the 1960s (Bosch and Sheridan,
2007). Streamflow data are collected from eight nested sub‐
watersheds within LREW, one of which, LRK, was chosen
for this study. Hydrologic response from LRK was examined
for the period from 1 January 1995 through 31 December
2004 because detailed land use coverages were available for
this period. Located near the headwaters of the Little River,
LRK supports a variety of land uses. Approximately 66% of
the 16.9 km2 LRK is covered with riparian and upland for‐
ests. The riparian forest cover consists of a mix of hardwoods
and evergreens along the dendritic stream system and pro‐
vides buffering of sediment, agricultural runoff, and nitrate‐
nitrogen in subsurface flow (Lowrance et al., 1984; Hubbard
et al., 1990; Lowrance et al., 1997). The remainder of LRK
is comprised of cotton and peanut fields, 21.6% and 9%, re‐
spectively, as well as pasture, corn, orchard, and other agri‐
cultural fields. Fifty‐four percent of the upland area of LRK
contains Tifton soil series, a loamy sand, while other soil
types, primarily loamy sands and sandy loams, are found in
the lower riparian zones near the stream system. Land use
characteristics  were gathered from a 2004 survey, while
elevation and soil data were acquired from the Georgia GIS
Clearinghouse (Feyereisen et al., 2007). A detailed descrip‐
tion of the process followed to incorporate the land use data
into SWAT is given by Bosch et al. (2004).

MODEL DESCRIPTION

The Soil and Water Assessment Tool (SWAT) hydrologic
model was developed by the ARS to simulate the following
major groups of processes: hydrology, nutrient and pesticide
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Figure 1. Location of LREW and LRK on the Coastal Plain (shaded gray) in south‐central Georgia.

cycling, erosion, plant growth, management practices, and
main channel and water body dynamics. The version of
SWAT used for evaluating this project's objectives was
SWAT2003. Land use/coverage, weather, soil, and geograph‐
ic data were input into SWAT using the integrated ArcView
GIS interface (AVSWAT‐X) (Di Luzio et al., 2004). The study
watershed was divided into 24 subbasins; within each subba‐
sin the GIS interface aggregated parcels of land with identical
properties (land use, soil type, and management) into hydro‐
logic response units (HRUs). SWAT was then used to simu‐
late the hydrologic processes throughout the watershed.
Within each HRU, SWAT uses the NRCS curve number
method (USDA‐NRCS, 2004b) to partition daily precipita‐
tion volume into infiltration and surface runoff. SWAT modi‐
fies CN on a daily basis as a function of antecedent soil
moisture content. CN can vary between the values assigned
for wilting point and field capacity for a given soil type and
cropping condition. CN is also adjusted based upon the field
slope.

Infiltrated precipitation is redistributed as lateral flow,
shallow and deep groundwater recharge, plant uptake, and
soil evaporation; surface runoff is routed into streams, ponds,
and reservoirs within the HRUs' respective subbasins. Trans‐
port processes are then performed to determine the move‐
ment of nutrients, pesticides, and sediment. Finally, the
surface water and any infiltrated water determined by SWAT
to return to surface waters as baseflow is routed from subba‐
sins to the watershed outlet. The routing portion consists of
both channel and reservoir routing and transport of nutrients,
pesticides, and sediments associated with these two segments
of routing (Neitsch et al., 2002).

SWAT INPUT PARAMETERS AND PROCESS MODIFICATIONS

SWAT input data for the LREW has been developed from
previous calibration studies (Bosch et al., 2004; Van Liew et
al., 2005; Feyereisen et al., 2007). Base values used for the
current study were taken from the Feyereisen et al. (2007)
calibration of LRK. Some of these input parameters to SWAT
were varied from their base values in an attempt to improve
upon the baseline calibration and increase the overall model
prediction accuracy. A description of the changes made to
each of these adjusted parameters follows.

Seasonal Curve Number Adjustment
Rainfall‐runoff data from monitored field plots have indi‐

cated that CN for antecedent runoff condition II (CN2) can
vary as much as five CN units between growing and dormant
seasons for typical crops on the Southeast Coastal Plain
(Feyereisen et al., 2008). To incorporate this observation into
the SWAT model of LRK, CN2 was adjusted within the pro‐
gram code for land uses corresponding to an agricultural crop
other than hay, orchard, or upland forest. Thus, CN2 values
for the following non‐crop or perennial plants were not ad‐
justed: orchard, hay, forests, wetlands, pastures, ranges,
grasses, alfalfa, clovers, and any type of tree. Once the HRU
was identified as having agricultural plant coverage, SWAT
was programmed to adjust CN2 2.5 units higher or lower de‐
pending upon the day of year. During the growing season
(1�May to 1 Nov.), CN2 was lowered 2.5 units. During the re‐
mainder of the year (the dormant season), CN2 was increased
2.5 units.

Initial Abstraction
The NRCS CN method (USDA‐NRCS, 2004b) estimates

the amount of direct runoff from precipitation with a minimal
number of inputs:
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where Q is the direct runoff, P is precipitation, Ia is the initial
abstraction, and S is the maximum potential retention
(all�units are inches of H2O). By convention, Ia is assumed to
equal 0.2S, and S is transformed into CN (USDA‐NRCS,
2004b):
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where the CN for each land use can be determined from refer‐
ence tables (USDA‐NRCS, 2004a). The NRCS has suggested
in the National Engineering Handbook (USDA‐NRCS,
2004b) that Ia = 0.2S may not be the optimal assumption.
Through comprehensive analysis of 28,301 rainfall‐runoff
events on 307 watersheds in 23 states, Woodward et al.
(2003) determined that 0.05S fit the observed data better than
0.20S. Additionally, after analyzing 58 rainfall‐runoff events
in the Ridge and Valley Province of east‐central Pennsylva‐
nia, Bryant et al. (2006) suggested that Ia needs to be variable,
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that is, <0.2S for smaller precipitation events and >0.2S for
larger precipitation events. Given the geographical breadth
and volume of data of the Woodward et al. (2003) analysis
and support of the Bryant et al. (2006) findings, we changed
Ia in the SWAT code to 0.05S to determine if SWAT hydrolog‐
ic model accuracy would improve as a result.

SWAT uses USDA‐NRCS CN values for various land
uses, which are calculated from rainfall‐runoff pairs using the
assumption that Ia = 0.2S (USDA‐NRCS, 2004b). Therefore,
all CN inputs into the SWAT model were adjusted to a value
corresponding to what they would have been had the new as‐
sumption, Ia = 0.05S, been used. The conversion from the
original CN (CN0.20) to the adjusted CN (CN0.05) was done
by incorporating equation 3 into the SWAT code (Woodward
et al., 2003):
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Riparian Zone Curve Number Modifications
To adjust for the varying alluvial storage of the LREW

(Sheridan and Shirmohammadi, 1986; Shirmohammadi et
al., 1986), areas described as alluvium were identified in the
SWAT code. The two alluvial soils in the LREW, Kinston and
Alapaha (Sheridan and Shirmohammadi, 1986), are in the
forested lowlands that cover approximately 21% of LREW.
The hypothesis that these riparian zones contribute much of
the surface runoff during wet seasons when the alluvial soil
profile is close to saturation was tested by adjusting CN2 of
these riparian HRUs. Shirmohammadi et al. (1986) described
the relative wetness of the soil profile in the LREW via a ratio
(�) of saturated alluvial depth (SAD) to total alluvial depth
(TAD):

 
TAD
SAD=α  (4)

For our study, relative wetness was captured similarly by
incorporating a variable, ratioX, into the SWAT code:
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where X is the soil layer, sol_st(X) is the amount of water
(mm�H2O) in the xth soil layer on the day of simulation,
sol_awc(X) is the amount of water that the xth soil layer is
capable of storing (mm H2O/mm soil), and sol_z(X) is the depth
of the xth soil layer. The value of ratioX was calculated for each
soil layer in each riparian HRU having alluvial soils. It is
important to note that sol_st(X) is the stored water beyond the
depth corresponding to the permanent wilting point. For
example, if the soil moisture storage of the layer at wilting point
is 2 mm H2O, and the soil layer contains a daily value of 6 mm
H2O, then the corresponding sol_st(X) will be 4 mm H2O.
Similarly, the product of sol_awc(X) and sol_z(X) represents the
available storage capacity between wilting point and field
capacity of the soil layer. Using ratioX provides a ratio similar
to � that compares daily water depth in each soil layer to the
theoretical maximum water depth the layer can store.

The final step towards using ratioX as an indicator for
changing CN2 was to determine appropriate values of ratioX
to represent wet and dry antecedent moisture conditions.
Examination of ratioX values calculated daily over the

ten‐year simulation period (1995‐2004) revealed that alluvial
riparian zone HRUs did not contribute much surface runoff
until the ratioX value for the top soil layer reached 0.80.
Under these same conditions, the ratioX value for the second
soil layer was typically 0.30. Both values are very similar to
the values reported by Shirmohammadi et al. (1986) for �
under “wet” and “medium wet” conditions for LRK and
another LREW subwatershed, LRI. The alluvial properties of
LRI and LRK are similar to each other (effective alluvial
depths of 1.81 and 1.87 m, respectively) and calculated
values of � were similar as well. “Wet conditions” in LRI
were defined by an � of 0.83 and in LRK by an � of 0.77
(Shirmohammadi  et al., 1986). The mean of these two values,
0.80, is the same value chosen for ratioX. Similarly, a
“medium wet” condition corresponded to � of 0.35 in LRK
(Shirmohammadi  et al., 1986), close to the value of 0.30
determined for ratioX. Based upon the similarities between
ratioX values and �, wet conditions in the riparian zones were
assumed to occur when the top layer's ratioX value reached
or exceeded 0.80 and the second layer's ratioX value
exceeded 0.30.

We used ratioX to determine the moisture condition of the
soil profile and adjusted CN2 of the riparian zone HRUs to
reflect those moisture conditions as follows. The base CN2
value (before modification) was 55, which was assigned to
the riparian zones as a result of the forested riparian zones
being in “good” hydrologic condition with soils in the B
hydrologic soil group (USDA‐NRCS, 2004a). To implement
the observations made from previous studies, the base CN2
value was adjusted to simulate the wet and dry conditions.
Rather than choose CN values at random, the modified CN
values were taken from CN tables corresponding to wooded
land use for a variety of hydrologic conditions. The first
adjustment made was to use CN values for woods in “fair”
hydrologic condition, which results in a CN range from 36 to
79, depending on soil hydrologic condition. These extreme
CN values were then used as values for the dry and wet
seasons, respectively. Along these same lines, another
adjustment was made to the riparian zones for the dry and wet
seasons. This second adjustment assumed that during the dry
season there was a “good” hydrologic condition, and during
the wet season there was a “poor” hydrologic condition. This
then resulted in a range of CN values from 30 to 83. While
the dry season values differ slightly from previous studies,
the two values used for the wet season, 79 and 83, correspond
to values used previously for the riparian zones in LRK
(Sheridan and Shirmohammadi, 1986). Once adjusted for
wet and dry seasons, these new CN values were used by
SWAT to determine the daily variation in CN as a function of
the HRUs' antecedent moisture conditions.

In addition to matching previous research results from
LRK, these riparian modifications also help SWAT to
determine the spatial distribution of runoff‐producing areas.
Previous research has led to the idea of variable source areas,
the concept that surface runoff is generated mainly from only
a given portion of a watershed. Typically, this runoff‐
producing area is in the lowland portion of a watershed,
which due to the large upstream contributing area and
changes in topography will remain saturated for longer
periods of time (Easton et al., 2007; Schneiderman et al.,
2007; Lyon et al., 2004). Thus, by increasing the CN for these
lowland riparian areas during the wet season, the spatial
identification  of runoff‐producing areas is better modeled.
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PARAMETER CALIBRATION
Surface Runoff Lag (SURLAG)

The surface runoff lag coefficient (SURLAG) is an input
parameter incorporated into SWAT to increase accuracy of
runoff predictions for large watersheds by adding a
temporary storage factor to the watershed model; as
SURLAG decreases, temporary available storage increases
(Neitsch et al., 2002). Previous studies have shown that for
streamflow, SURLAG can be a relatively sensitive parameter
(van Griensven et al., 2006) or a relatively insensitive
parameter (Feyereisen et al, 2007). The two watersheds used
for the van Griensven et al. (2006) analysis were much larger
than the LRK watershed in the other study: 932 km2 and
3240�km2 versus 17 km2, respectively. After creating the
manually calibrated baseline of LRK in SWAT, Feyereisen et
al. (2007) performed sensitivity analysis of 16 parameters,
including SURLAG. The results showed that water yield was
virtually unaffected by perturbing the value of SURLAG, but
that modeling efficiency was affected. The researchers
indicated that adjusting SURLAG to something less than the
baseline value of 1 could improve model efficiency.
SURLAG was methodically varied across the range of 0 to 1
using the bisection method. At each adjustment SWAT was
rerun and the Nash and Sutcliffe (1970) model efficiency
(NSE) was recalculated. This process was repeated until the
maximum NSE for this SURLAG value range was located.

Baseflow Recession Constant (ALPHA_BF)
The SWAT input parameter alpha baseflow (ALPHA_BF)

is a baseflow recession constant that describes how quickly
groundwater is affected by recharge (Neitsch et al., 2002).
Van Griensven et al. (2006) identified ALPHA_BF as
“slightly important” with respect to streamflow sensitivity,
yet having an “important” effect on stream sediment and
nutrient estimates. As with SURLAG, Feyereisen et al.
(2007) determined that ALPHA_BF was an insensitive
parameter to streamflow estimate for LRK, but that it may
influence modeling efficiency. During the previous manual
calibration and sensitivity analysis of that study, it was found
that an ALPHA_BF of 0.039 was more accurate than using
the baseline value of 0.035. Thus, this parameter was
adjusted between 0.035 and 0.050 at intervals of 0.005, and
the impact on TWLD was determined using goodness‐of‐fit
characteristics.

GOODNESS‐OF‐FIT CHARACTERISTICS

Model simulations must be compared to observed data in
some manner in order to assess prediction accuracy of the
model. As discussed by Moriasi et al. (2007), there are
numerous methods commonly used to evaluate hydrologic
model efficacy. One of the more frequently applied
techniques in the literature is the NSE (Nash and Sutcliffe,
1970), defined by equation 6:
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where Oi is the observed water yield for time step i, Si is the
simulated water yield for time step i, O  is the mean of the
observed data over the entire period of simulation, and n is

the number of time periods. Nash‐Sutcliffe efficiencies vary
from one to −∞ , where a value of one indicates that the
simulated model water yield matches the observed data
perfectly.

The squared terms in equation 6 heavily influence NSE
values to the presence of outliers in the simulated water yield
values. While visual inspection of the hydrographs may
confirm that measured and predicted values match the
majority of the time, the presence of one extreme
overprediction by SWAT (as occurs in LREW by the presence
of tropical storms) can negatively skew the computed NSE
value. To correct for this sensitivity to extreme values,
Legates and McCabe (1999) suggested using the absolute
difference in values (eq. 7) rather than the squared
differences:
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where NSE1 is the Nash‐Sutcliffe efficiency based on
unsquared absolute difference values, and Oi, Si, O , i, and n
are as previously defined.

The third goodness‐of‐fit characteristic considered was
percent bias (PBIAS):
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where Oi, Si, i, and n are as previously defined. Percent bias
quantifies the model's tendency to overpredict or
underpredict values, on average, over the entire modeling
period. When a model underpredicts streamflow, a positive
bias results; when a model overpredicts streamflow, a
negative PBIAS occurs. PBIAS is zero when the model
favors neither underprediction nor overprediction.

NSE is widely reported for hydrologic models and
provides a quick overview of a model's accuracy. The
model's PBIAS towards underprediction or overprediction is
also useful because it indicates the overall trend of the
model's predictions. These two characteristics provide a
concise summary of the conclusions that can be drawn from
an examination of the output hydrographs for the entire
modeling period. NSE indicates how close the predicted
values are to the observed, and PBIAS indicates whether the
predictions on average were too high, too low, or evenly
distributed between the two. NSE1 was included because it
is less sensitive to outliers, and large tropical storms produced
outlier events during the timeframe of our study.

AVERAGE ANNUAL WATER BALANCE

In addition to the goodness‐of‐fit characteristics, an
average annual water balance was used as an indicator of
model accuracy. The simulated and observed average annual
water balances were compared by calculating the relative
error (eq. 9) between the two, which is often referred to as the
deviation of runoff volume (Dv) (Martinec and Rango, 1986;
ASCE, 1993; Gitau et al., 2006; Moriasi et al., 2007):
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where S and O represent simulated and observed data
averages, respectively. The subscript k stands for the
component of the annual water balance being compared:
stormflow; baseflow; evapotranspiration; deep percolation;
or total water balance, which is defined as the sum of the four
previous components. The deviations of volume for
stormflow (DvSF) and total water balance (DvBAL) were
included in model assessment to quantify model output
differences from corresponding observational data for
various components of the hydrological cycle.

ADJUSTMENT FOR UNCERTAINTY IN OBSERVED DATA

The goodness‐of‐fit characteristics described are useful in
quantitatively describing the performance of a model, but the
observed data used for comparison in these equations are
assumed to be error free, which is very rarely the case. As
discussed in depth by Harmel et al. (2006), it is known that
error exists in all data and can be of relatively large
magnitude. Therefore, while useful in demonstrating relative
improvements in model accuracy, the aforementioned
characteristics  can be improved upon by including observed
data uncertainties. Harmel and Smith (2007) propose two
modifications to goodness‐of‐fit characteristics to account
for what Harmel et al. (2006) termed probable error range
(PER). One of these modifications was implemented on the
SWAT simulation results of the LREW.

The PER is determined by equation 10:
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=

=
n

j
jE

1

2PER  (10)

where Ej represents the amount of error introduced to the
observed data from the jth potential source, and n is the total
number of potential sources. For example, in total water yield
measurements,  error can be introduced by improper
installation of a weir, an inaccuracy in a stage‐discharge
relationship,  an unstable streambed, or data recorder
imprecision.  Specific values for Ej are given by Harmel et al.
(2006) and were used to predict three different error ranges:
best case, worst case, and intermediate case scenarios. These
error ranges were then used to determine an uncertainty range
(UR) above and below each observed datum for the three
scenarios, as shown in equation 11:
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Harmel and Smith (2007) suggest that a more realistic
description of model accuracy would be to quantify how far
the simulated result is from the outer limit of the uncertainty
range, as compared to the difference between the observed
and simulated values. A graphical representation of this
modification is given in figure 2 (adapted from Harmel and
Smith, 2007). In practice, the numerator of goodness‐of‐fit
characteristics  (Oi - Si) is set to zero when Si falls within URi
(fig. 2, case 2). When Si is above or below URi, (fig. 2, cases�1
and 3, respectively) (Oi - Si) is changed to Si subtracted from
the upper or lower limit to URi, respectively.

When including an uncertainty range for observed data,
model NSE values can increase in proportion to the size of the

Figure 2. Graphical representation of a hypothetical uncertainty range
(UR) associated with observed data and the modifications to “goodness‐
of‐fit” parameters as suggested by Harmel and Smith (2007).

Table 1. Three scenarios for error in observed data; error
ranges and PER calculated from Harmel et al. (2006).

Error Source Best Case Intermediate Worst Case

Stage‐discharge relationship ±5% ±8% ±10%
Data recorder ±2% ±2% ±2%
Streambed condition ±0% ±0% ±10%
Probable error range (PER) ±5.39% ±8.25% ±14.28%

uncertainty range. By assuming a broader range of possible
values for the observed data, a broader range of simulation
values is considered acceptable. Therefore, if error in
observed data is assumed to be minimal, the model is held to
the strictest performance requirements. Three scenarios were
examined for the inclusion of error in observed data: best
case, worst case, and an intermediate case scenario based on
Harmel et al. (2006) (table 1). The best case assumed that the
observed data were as accurate as possible (placing the
tightest restrictions on NSE calculations), the worst case
assumed that the observed data were least accurate, and the
intermediate  case calculated errors between these two
assumptions. Of the error sources and uncertainty ranges
reported by Harmel et al. (2006), three were determined to be
relevant to the recorded streamflow from LRK. The first
source of error was the stage‐discharge relationship at the
weir. An uncertainty range for a “pre‐calibrated flow control
structure” ranges from 5% to 10%, depending upon the
frequency at which the recorded flows are double‐checked
with a flowmeter. The other two error sources were
determined to be the data recorder and the stability of the
streambed. A 2% error range was assumed to be present due
to the use of a float recorder, and a stable or unstable
streambed would introduce 0% or 10% error, respectively
(Harmel et al., 2006).

VISUAL ASSESSMENT

The “goodness‐of‐fit” characteristics discussed provide
valuable information regarding the accuracy of models, but
they do not tell the whole story regarding the SWAT model's
predictive proficiency. Visual comparisons of observed
hydrographs are needed in addition to quantitative statistics
(ASCE, 1993). Predicted and observed daily TWYLD for
each year of the study period were graphed, event peaks and
durations were compared, and overprediction and
underprediction tendencies were evaluated.
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MODIFICATION METHODOLOGY
The ten‐year period 1995 to 2004 was simulated for the

described SWAT parameter and process modifications using
baseline calibration input parameters. Goodness‐of‐fit
characteristics were calculated at each modification step. The
volume deviations (Dv) of the simulated annual water balance
components were also examined after each simulation to ensure
that the division of water among baseflow, surface runoff, ET,
and deep percolation was not compromised for a higher
predictive capability at the daily time step. The first
modification made to the SWAT code was the seasonal
adjustment of CN2 for cropped land. The next code
modifications made were Ia = 0.05S and riparian zone CN
adjustments based on ratioX. Finally, the two input parameters,
SURLAG and ALPHA_BF, were individually changed by
manual adjustment, as discussed previously. SWAT's sensitivity
to each of the changes (seasonal CN adjustment, Ia = 0.05S,
ratioX, SURLAG, and ALPHA_BF) was determined by
running the model separately for each single adjustment. Once
all individual changes were modeled, a final simulation, named
“combined changes,” was performed with all of the
modifications included. Finally, to provide perspective on the
influence of measurement uncertainty on model results,
goodness‐of‐fit characteristics were recalculated incorporating
the uncertainty range associated with the observed hydrologic
data.

RESULTS AND DISCUSSION
Statistical measures of modeling accuracy for the baseline

calibration,  each individual adjustment, and the combined
changes are summarized in table 2. Results for each
adjustment are discussed in the following sections.

SEASONAL CURVE NUMBER ADJUSTMENT
Adjusting CN for growing and dormant seasons resulted

in modest improvements in the water yield predictions
(table�2). Results of the current study showed a slight
improvement for daily NSE, from 0.42 to 0.44, but a slight
decline for PBIAS from 0.38% to 0.52% (table 2). The
stormflow estimate of the annual water balance more nearly
matched the observed value (DvSF = 0.22%, table 2) than all
but one of the other modifications. Thus, the daily water yield
and stormflow estimates were both slightly improved when
unique CNs were used for growing and dormant seasons.

Table 2. SWAT accuracy for water yield simulations
in LREW subwatershed K (1995‐2004).

Modifications NSEdaily

PBIAS
(%)

DvBAL
[a]

(%)
DvSF

[b]

(%)

Baseline calibration 0.42 0.38 ‐0.46 ‐1.70
Seasonally adjusted CN2 0.44 0.52 ‐0.46 0.22
Ia = 0.05S 0.52 0.01 ‐0.48 ‐2.22
Riparian CN2 Adjust #1: 

Fair condition
0.45 0.14 ‐0.44 ‐0.75

Riparian CN2 Adjust #2: 
Poor condition

0.46 0.00 ‐0.43 0.02

SURLAG = 0.460 0.62 0.52 ‐0.47 ‐1.76
ALPHA_BF = 0.045 0.42 0.23 ‐0.41 ‐1.70
Combined changes 0.66 ‐0.17 ‐0.42 ‐0.91
Ideal values 1.00 0 0 0
[a] DvBAL = volume deviation for total water balance.
[b] DvSF = volume deviation for stormflow.

INITIAL ABSTRACTION ADJUSTMENT
Re‐evaluation of USDA‐NRCS's assumption that Ia

equals one‐fifth of the potential storage of a watershed was
the second most effective modification made. By
incorporating the assumption that Ia = 0.05S, the model daily
NSE increased to 0.52, just above the threshold of 0.50
suggested by Moriasi et al. (2007) for an “adequate”
hydrologic model calibration for a monthly time step. Given
that lower performance ratings are generally warranted for
shorter time steps, the daily NSE of 0.52 is well within the
“adequate” category. PBIAS was reduced to 0.01% after
changing Ia, very close to the 0% PBIAS obtained from the
Riparian CN2 Adjust #2 modification. While daily NSE and
PBIAS values improved substantially from the baseline,
annual stormflow deviation (DvSF) was greater for the Ia
modification than for any other modification, increasing by
0.52% from the baseline deviation. The discrepancy between
an improved NSE and slightly less accurate DvSF may be
resolved by finding a uniquely fit Ia for LRK.

Another potential avenue for improvement in modeling
with the CN method is to use the suggestion of Bryant et al.
(2006) to vary Ia as a function of storm size. Their suggestion
to decrease Ia for smaller storms conceivably addresses
SWAT's tendency to underpredict low flows because with a
lower Ia, more runoff will be estimated. Conversely, their
suggestion to use a higher Ia for larger storms will decrease
runoff prediction by the CN method, which addresses
SWAT's tendency to overpredict runoff due to large storms.
The seasonal CN differences identified by Feyereisen et al.
(2007) were based on the Ia = 0.2S assumption. Perhaps
focusing on a seasonal Ia rather than on a seasonal CN would
yield better results. However, while the aforementioned
approaches provide promising possibilities for hydrologic
modeling improvement, they were beyond the scope of this
project, which was to examine the effectiveness of using 0.05
rather than 0.20. To those ends, the suggestions made by
Woodward et al. (2003) did indeed provide a more accurate
hydrologic model.

RIPARIAN ZONE MODIFICATION

Adjustments made to the riparian zone CNs provided
slightly more accurate results than the baseline calibration.
Riparian CN2 Adjust #1, in which CNs for woods in fair
hydrologic condition were used, resulted in an 0.03 increase
from the baseline of daily NSE values for the ten‐year period
(table 2). PBIAS was reduced by 0.24%, while stormflow
deviation (DvSF) between predicted and observed volumes
improved by 0.95%. DvBAL was essentially unchanged.
Riparian CN2 Adjust #2, which based CN2 values on a “poor
hydrologic condition” rating, resulted in an even better
predictor of the hydrologic processes in LREW LRK. The
stormflow prediction was essentially identical to the
observed annual average, with DvSF = 0.02%. The daily NSE
value also improved by 0.04, from 0.42 to 0.46. The PBIAS
for this modification improved as well, to 0%, indicating that
the simulated and measured average water yields are equal.
DvBAL was again essentially the same.

While modest improvements were made to the daily NSE
of the model for both of these two riparian zone
modifications,  Adjust #2 resulted in a more accurate
prediction of annual stormflow. These improvements
provide both better predictive capabilities of the model and
a simple mechanism to account for fluctuating storage due to
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lowland alluviums, which otherwise are not incorporated
into the SWAT model. Although the riparian CN adjustments
are not directly based on daily observed data, they improve
the spatial portion of the SWAT hydrology component by
causing stormflow to be generated from more realistic
locales within LRK. This adjustment begins to address the
issue of the CN method's inability to differentiate between
the various streamflow generating processes. By increasing
the CN for lowlands during wet periods, more surface runoff
from these zones was predicted by SWAT. Increasing flow
from the wet lowlands results in a model that not only
addresses the theoretical discussion of the CN method's
inability to predict saturation‐excess runoff (Garen and
Moore, 2005), but also the observed hydrologic
characteristics  of these alluvial lowlands (Sheridan and
Shirmohammadi,  1986; Shirmohammadi et al., 1986).

SURLAG CALIBRATION

Modification of the SURLAG parameter led to the best
value of NSE for LRK. By using a value of 0.460 for
SURLAG with the baseline parameter set, rather than the
baseline calibrated value of 1.0, the daily NSE value
increased to 0.62. Decreasing SURLAG from the baseline
calibration value of 1.0 reduces the delay of surface runoff to
the main channel, resulting in more accurate daily prediction
of streamflow. For LRK, the SURLAG retention parameter
serves as an artificial method to account for otherwise
unaccounted‐for  available storage, such as small irrigation
ponds located throughout the subwatershed and the variable
alluvial storage previously discussed. While the daily NSE
values improved by 0.20 from the baseline with the SURLAG
adjustment,  the other statistics were virtually unchanged;
PBIAS increased by 0.14%, and DvSF dropped from -1.70%
to -1.76%. The improved daily NSE indicates that by
retaining the surface runoff for a shorter period of time,
SWAT is more accurate at predicting the timing and
magnitude of peak flows.

ALPHA_BF ALTERATION

Altering ALPHA_BF had the least impact on the SWAT
model results for LRK. Adjustment within the range of 0.035
to 0.055 had a negligible effect on the model accuracy. The
median of this range, 0.045, led to a slightly better PBIAS
(0.23% versus 0.38%), but no changes to NSE. Additionally,
changes to ALPHA_BF made no change to the calculated
stormflow or evapotranspiration components of the annual
water budget, but they did change the baseflow component
by increasing the amount of deep percolation (DvBAL
improved from -0.46 to -0.41). Thus, the total water yield
component (total water yield = baseflow + stormflow) was
slightly improved.

COMBINED CHANGES EFFECTS
The magnitude of improvements to SWAT accuracy

varied considerably for the range of code and parameter
modifications made. While all individual changes improved
some aspect of the hydrologic model, the improvements were
not additive when incorporated into a single modification.
The five modifications included in the final simulation,
termed “combined changes” in table 2, were the seasonally
adjusted CN2, Ia = 0.05S, Riparian CN2 Adjust #2,
SURLAG�= 0.460, and ALPHA_BF = 0.045. The resultant

daily NSE value for the combined changes calibration was
0.66 (table 2), which falls above the threshold for “very
good” values suggested for the NSE (Moriasi et al., 2007).
The estimated water yield for the combined changes
simulation (shown by PBIAS) was slightly below the
observed value, indicating that the model was consistent with
respect to representing the water yield component of the
hydrologic cycle. The volume deviation measures for total
water balance and stormflow (DvBAL and DvSF, respectively)
decreased slightly from the baseline, suggesting that the
combined changes simulation more accurately represented
daily fluctuations in the water balance than did the baseline
simulation.

The improvements made to daily NSE of the SWAT model
of LRK for each year of the simulation can be observed in
figure 3. When calculated for individual year, the daily NSE
values for the combined changes simulation ranged from
0.10 to 0.78, a marked improvement over the baseline
calibration NSE values of -0.80 to 0.64. These NSE values,
along with the ten‐year value of 0.66, compare favorably to
values obtained for other watersheds using SWAT. Gassman
et al. (2007) provide a thorough review of over 60 SWAT
modeling studies where NSE values were reported for daily
streamflow. The range for these reported NSE values was
from -102 to 0.99, with many studies having a drainage area
roughly the size of the LREW reporting values from
approximately  0.2 to 0.7. While there is a lot of variation in
the reported values and the drainage area for each of these
models, it is clear from examining the review by Gassman et
al. (2007) that the current LRK SWAT model returns
relatively accurate results.

Improvements to average annual water budget
components were not as dramatic as the NSE changes
because the baseline calibration returned accurate
predictions for water budget component volumes (table 3).
Care was taken in the baseline calibration to partition
baseflow and stormflow to match values determined by prior
research in the LREW (Shirmohammadi et al., 1984). This
was done to facilitate future water quality modeling, for
which correct representation of surface and subsurface
processes is important. However, the combined changes
simulation more accurately predicted the stormflow
component, as evidenced by the DvSF value. This finding
demonstrates that the study objective of improved TWYLD
predictions was met. Thus, the combined changes simulation
maintained and enhanced the baseline calibration support for
future water quality modeling. Average annual model
estimates were slightly off for the combined changes
simulation for ET, a water budget component that is difficult
to measure and is thus an “observed estimate.”

VISUAL ASSESSMENT
The hydrograph for the most accurate year (1995) of the

ten‐year simulation indicated that the combined changes
simulation better predicted peak flows than the baseline
calibration (fig. 4). However, it is evident from the
hydrograph that SWAT still underpredicted water yield for
the wet part of the year (fig. 4, DOY 10 to 40). During the
historically dry part of the year when late summer tropical
storms tend to occur, the modifications to SWAT improved
results compared to the baseline calibration (fig. 5).
Overpredictions for the first days of two tropical storms
occurring on 13 October (DOY 286) and 11 November (DOY
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Figure 3. Improvement in daily NSE values from baseline calibration to
combined changes simulation, 1995‐2004.

315) in 2002 were much less than for the baseline calibration;
however, SWAT still predicted nearly 5 mm of total water
yield for 13 October when virtually no streamflow was
observed in LRK.

The treatment of ET needs to be investigated as a
contributor to the seasonal under‐ and overpredictions in
SWAT. Anand et al. (2007) found that SWAT simulated high
ET requirements soon after crop planting, which would lead
to predictions of lower soil moisture and runoff during the
spring. If the converse case holds, then simulated ET

Table 3. Average annual water budget and
deviation (Dv) from observed (1995‐2004).

Budget Component
Obs.
(mm)

Baseline
Calibration

Combined
Changes

Simulation

(mm) Dv (%) (mm) Dv (%)

Total water yield[a] 317.40 316.23 ‐0.37 318.11 0.22
Baseflow 222.18 222.63 0.20 222.80 0.28
Stormflow 95.22 93.60 ‐1.70 95.30 0.08

Evapotranspiration 807.00 803.00 ‐0.50 801.60 ‐0.67
Deep percolation 11.40 11.37 ‐0.26 11.35 ‐0.44
Total water balance 1135.80 1130.60 ‐0.46 1131.10 ‐0.42
[a] Total water yield = baseflow + stormflow.

requirements may be too low during the late summer to
autumn dry period, resulting in wetter‐than‐actual soil
moisture and a consequent overprediction of runoff. Since
these modeling patterns have been noted in numerous SWAT
studies, additional research focusing on the issue is needed.

OBSERVED DATA UNCERTAINTY AND ALTERNATE NSE
Once the combined changes simulation was complete,

two variations of the Nash‐Sutcliffe efficiency were
examined (table 4). The traditional variation, NSE (eq. 6),
was used with the acknowledgement that the observed data
used for comparison were not error‐free, while NSE1 (eq. 7)
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Figure 4. Daily total water yield for 1995, the year with the highest daily NSE value: 0.45 for baseline calibration and 0.78 for the combined changes
simulation.
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Figure 5. Daily total water yield for 2002, the year with lowest daily NSE value: -0.37 for baseline calibration and 0.10 for the combined changes
simulation.
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Table 4. Daily NSE values determined by various
alternative calculations for two SWAT simulations.

Baseline
Combined
Changes

Baseline NSE 0.42 0.66
NSE1 [a] 0.48 0.52
NSE with PER[b] = ±5.39%[c] 0.48 0.71
NSE with PER = ±8.25%[c] 0.51 0.74
NSE with PER = ±14.28%[c] 0.57 0.78
[a] From Legates and McCabe (1999), using equation 7.
[b] PER = probable error range.
[c] From Harmel and Smith (2007), using equation 6.

was used to provide a statistic that was not as susceptible to
singular large errors. The NSE1 value was 0.06 units higher
than the traditional NSE calculation for the baseline
calibration,  but 0.14 units lower for the combined changes
simulation. By using the absolute value of the differences
rather than the square of the differences between observed
and simulated, NSE1 will be less than NSE if the majority of
differences are less than one unit (in this case, mm), and vice
versa. The lower value for the combined changes simulation
indicates that large errors from a few extreme events had less
of an effect on model accuracy than numerous slight
differences in predictions of average flow; the opposite
conclusion can be drawn from the higher value calculated for
the baseline calibration.

As expected, daily NSE values were highest for the worst
case scenario and lower for the other two scenarios (table 4). All
scenarios that included uncertainty of observed data improved
NSE values, with larger changes occurring as the uncertainty
range increased. The amount of uncertainty assumed in
observed data should be kept to a minimum to result in tougher
model performance requirements; however, it is important to
include some uncertainty to acknowledge that the data used for
calibration are not completely error‐free.

Throughout all of the modifications that led to an increase
in model accuracy on the daily time step, the monthly and
yearly predictions (not shown) were not adversely affected.
In fact, the monthly NSE increased from 0.78 to 0.80 after the
combined changes were made, and the yearly NSE remained
at 0.85. A final indicator of the improvements made to the
SWAT model of LRK was the daily NSE values calculated for
only a portion of the ten‐year simulation. In a past modeling
study of LREW (Feyereisen et al., 2007), it was reported that
model accuracy was greater for the six‐year period from 1997
through 2002 than for the ten‐year period from 1995 through
2004. In that study, the daily NSE for the baseline calibration
was 0.56 for 1997‐2002, 0.14 higher than the ten‐year NSE
of 0.42. The daily NSE values for the combined changes
simulation were 0.69 for 1997‐2002 and 0.66 for 1995‐2004,
a difference of only 0.03. The narrowing of the difference in
daily NSE values over these two time periods indicates that
the modified SWAT model estimates water yield more
consistently throughout years that exhibit widely varying
meteorological  and hydrological conditions.

CONCLUSION
Several simple modifications to the hydrologic

component of SWAT were found to notably improve SWAT‐
simulated water yield predictions from LREW LRK, a
16.9�km2 southeastern Coastal Plain watershed with alluvial

riparian buffers. More closely calibrating the SWAT surface
runoff lag coefficient (SURLAG) improved total water yield
predictions the most, while changing the Ia ratio assumption
of Ia = 0.2S to Ia = 0.05S also increased accuracy. Altering
cropland CNs for growing and dormant seasons and
incorporating the CN into a function to account for riparian
soil moisture resulted in modest improvements in the water
yield predictions. Further calibrating the baseflow
coefficient (ALPHA_BF) had no impact on model accuracy.
Improvements in model statistics and visually assessed
hydrograph characteristics support the conclusion that the
combined modifications made to SWAT better represent the
model processes governing TWYLD prediction.

Existing literature has indicated that SWAT typically
overpredicts water yield in dry seasons and underpredicts it
during wet seasons. The changes made in this study reduced
the tendency of SWAT to overpredict total water yield but did
not appear to address the underpredictions. While most peaks
that were overpredicted were simulated more accurately with
the adjusted parameters, extremely large rain events
(i.e.,�tropical  storms) during the typically dry autumn still led
to SWAT predicting streamflow when no flow was observed.
SURLAG calibration appeared to greatly improve the
overprediction trend of SWAT, but perhaps cancelled out any
improvements during the wet season made by the other
modifications.  More research should be conducted to
determine what parameters and calculations in the SWAT
model are responsible for the model's trend towards
underpredicting water yield for wet seasons in this
physiographic region.

The SWAT modifications used in this study are potentially
applicable to watersheds of various sizes in other
physiographic provinces. Further research should be
conducted to determine if the changes made to SWAT's
treatment of hydrologic processes in the current project are
applicable and effective in improving modeling for
watersheds across a range of climates, soil types, land uses,
and topographies. In addition, the results of this study support
the findings of others that the Ia = 0.2S assumption made in
the CN method can be improved upon and offer a lead‐in to
future research focused on increasing model performance by
identifying a different expression for Ia.
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